Effects of the mitotic cell-cycle mutation cdc4 on yeast meiosis.
نویسندگان
چکیده
The mitotic cell-cycle mutation cdc4 has been reported to block the initiation of nuclear DNA replication and the separation of spindle plaques after their replication. Meiosis in cdc4/cdc4 diploids is normal at the permissive temperature (25 degrees) and is arrested at the first division (one-nucleus stage) at the restrictive temperature (34 degrees or 36 degrees). Arrested cells at 34 degrees show a high degree of commitment to recombination (at least 50% of the controls) but no haploidization, while cells arrested at 36 degrees are not committed to recombination. Meiotic cells arrested at 34 degrees show a delayed and reduced synthesis of DNA (at most 40% of the control), at least half of which is probably mitochondrial. It is suggested that recombination commitment does not depend on the completion of nuclear premeiotic DNA replication in sporulation medium.--Transfer of cdc4/cdc4 cells to the restrictive temperature at the onset of sporulation produces a uniform phenotype of arrest at a 1-nucleus morphology. On the other hand, shifts of the meiotic cells to the restrictive temperature at later times produce two additional phenotypes of arrest, thus suggesting that the function of cdc4 is required at several points in meiosis (at least at three different times).
منابع مشابه
Reversal of cell determination in yeast meiosis: postcommitment arrest allows return to mitotic growth.
When yeast from the early stages of meiosis are transferred from sporulation to growth medium, they can reenter the mitotic cell cycle directly. In contrast, cells from later stages of meiosis (after the initiation of the first nuclear division) will complete meiosis and sporulation despite the shift to growth medium, a phenomenon known as "commitment to meiosis." This study reports the surpris...
متن کامل10-15-2003 Molecular Biology of the Cell: REVISED MEIOSIS-SPECIFIC FAILURE OF CELL CYCLE PROGRESSION IN FISSION YEAST BY MUTATION OF A CONSERVED -TUBULIN RESIDUE
The microtubule cytoskeleton is involved in regulation of cell morphology, differentiation and cell cycle progression. Precisely controlled dynamic properties are required for these microtubule functions. To better understand how tubulin’s dynamics are embedded in its primary sequence we investigated in vivo the consequences of altering a single, highly conserved residue in -tubulin that lies a...
متن کاملMeiosis-specific Failure of Cell Cycle Progression in Fission Yeast by Mutation of a Conserved -Tubulin Residue□V
The microtubule cytoskeleton is involved in regulation of cell morphology, differentiation, and cell cycle progression. Precisely controlled dynamic properties are required for these microtubule functions. To better understand how tubulin’s dynamics are embedded in its primary sequence, we investigated in vivo the consequences of altering a single, highly conserved residue in -tubulin that lies...
متن کاملBud formation by the yeast Saccharomyces cerevisiae is directly dependent on "start"
Cells of the yeast Saccharomyces cerevisiae, which bear a cdc4 gene mutation, arrest early in the cell cycle but continue to produce buds in a periodic fashion. We show here that this periodic bud formation by cells already arrested at the CDC4 step is inhibited if the cell cycle regulatory step "start" is also specifically blocked by mutation or by the presence of the yeast mating pheromone al...
متن کاملB-Cyclin/CDKs Regulate Mitotic Spindle Assembly by Phosphorylating Kinesins-5 in Budding Yeast
Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCF(Cdc4) ubiquitin ligase are required for the separation of spindle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 86 1 شماره
صفحات -
تاریخ انتشار 1977